Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Pathologist
  • Explore Pathology

    Explore

    • Latest
    • Insights
    • Case Studies
    • Opinion & Personal Narratives
    • Research & Innovations
    • Product Profiles

    Featured Topics

    • Molecular Pathology
    • Infectious Disease
    • Digital Pathology

    Issues

    • Latest Issue
    • Archive
  • Subspecialties
    • Oncology
    • Histology
    • Cytology
    • Hematology
    • Endocrinology
    • Neurology
    • Microbiology & Immunology
    • Forensics
    • Pathologists' Assistants
  • Training & Education

    Career Development

    • Professional Development
    • Career Pathways
    • Workforce Trends

    Educational Resources

    • Guidelines & Recommendations
    • App Notes

    Events

    • Webinars
    • Live Events
  • Events
    • Live Events
    • Webinars
  • Profiles & Community

    People & Profiles

    • Power List
    • Voices in the Community
    • Authors & Contributors
  • Multimedia
    • Video
    • Podcasts
Subscribe
Subscribe

False

The Pathologist / Issues / 2022 / Feb / The Big Freeze
Quality assurance and quality control Technology and innovation Research and Innovations

The Big Freeze

Cryobioprinting could maximize the shelf life of bioprinted 3D tissues

By Liv Gaskill 02/07/2022 Quick Read (pre 2022) 1 min read

Share

3D bioprinted tissues hold promise for the future of medical research and patient care – but they are currently limited by their short shelf life. Challenges in fabrication and storage mean such tissues survive only days or even hours – so rapid transportation is necessary to ensure that they are viable at their destination. But a new cryobioprinting strategy simultaneously fabricates and stores 3D tissues in cryogenic conditions – meaning they can be preserved for longer, with cryoprotective bioinks helping to maintain cell functionality (1).

Cryobioprinting also allows scientists to print more intricate shapes than traditional methods. “The bioink filament freezes within milliseconds of reaching the cold plate, so it has no time to lose its original shape,” said lead author Y. Shrike Zhang (2). “Then you can build layers on top of each other, eventually creating a freestanding 3D structure that can withstand its own weight.”

But the ability to build stable structures is not the only advantage of the cryobioprinting process. To ensure that the bioprinted tissues worked as intended, the researchers first created cell-laden constructs using a variety of bioinks to identify the ideal combination of cryoprotective agents, then conducted a series of assays to evaluate the viability of the resulting tissues. The good news? Using this new approach, cryobioprinted tissues could be revived even three months after fabrication.

“Reviving the tissues is pretty easy,” said Zhang (2). “It’s like reviving any type of cryo-stored cells. You return them into a warm medium and use a rapid thawing process.” The viability testing also demonstrated that the revived tissues were capable of performing their original functions – and that the cells were even able to undergo normal differentiation. Taken together, these results mean that cryobioprinted tissues can be stored for future use and transferred between locations as needed – whether for research collaborations, pharmaceutical testing, or even transplantation into patients.

Newsletters

Receive the latest pathology news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. H Ravanbakhsh et al., Matter, (2021).
  2. Cell Press (2021). Available at: https://bit.ly/3IzqodJ.

About the Author(s)

Liv Gaskill

During my undergraduate degree in psychology and Master’s in neuroimaging for clinical and cognitive neuroscience, I realized the tasks my classmates found tedious – writing essays, editing, proofreading – were the ones that gave me the greatest satisfaction. I quickly gathered that rambling on about science in the bar wasn’t exactly riveting for my non-scientist friends, so my thoughts turned to a career in science writing. At Texere, I get to craft science into stories, interact with international experts, and engage with readers who love science just as much as I do.

More Articles by Liv Gaskill

Explore More in Pathology

Dive deeper into the world of pathology. Explore the latest articles, case studies, expert insights, and groundbreaking research.

False

Advertisement

Recommended

False

Related Content

R-Tracker: The First of Its Kind
Quality assurance and quality control
R-Tracker: The First of Its Kind

December 29, 2021

1 min read

Milestone is committed to enhancing patient safety with a new disruptive technology

The Big Freeze
Quality assurance and quality control
The Big Freeze

February 7, 2022

1 min read

Cryobioprinting could maximize the shelf life of bioprinted 3D tissues

Biospecimen Access For Biotechs
Quality assurance and quality control
Biospecimen Access For Biotechs

February 14, 2022

1 min read

Quality, provenance, and “taking pot luck”

Questions of Quality
Quality assurance and quality control
Questions of Quality

October 21, 2016

1 min read

The importance of quality is broadly accepted – witness the plethora of standards and guidelines – but do they lead to effective implementation?

False

The Pathologist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.